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Introduction



Determinant of a matrix

The determinant of a 2 x 2 matrix A = [a;;] is the number:
Why???
det(A) = a;1a3; — A12051

O The absolute value of the determinant of a matrix measures how
much it expands space when acting as a linear transformation. That
Is, it is the area (or volume, or hypervolume, depending on the
dimension) of the output of the unit square, cube, or hypercube after it
IS acted upon by the matrix.



Geometric interpretation

0 The volume is a n-alternating multiinear map on all n-
parallelepipeds such that the volume of standard unit parallelepiped is

one. volume of output region

volume of input region
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A 2 X 2 matrix A stretches the unit square (with sides e; and e,) into a parallelogram with sides Ae; and Ae, (the columns of A). The
determinant of A is the area of this parallelogram.



Geometric interpretation
o = ;)

A1 > V V(A1) >0
1 a,

a1 = (o)

Az N a, V(Az) =0
” - ——
a;
A3 _ a1
A= [Cl1 az] , Ay = 04 m V(43) <0

V(ay,a;) = =V(az, a;)



Determinants as Area or Volume

O If Ais a2 X 2 matrix, the area of the parallelogram determined by the columns of A is

det(A)
O If Ais a3 x 3 matrix, the volume of the parallelepiped determined by the columns of A
is det(A)
O | EReEics cosf® —sinf
Volume of . It is a rotation with O degree
sin@ cos@

|A
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Volume
Definition

Every n-dimensional parallelepiped with {a4, ..., a,} as legs is associated with @
real number, called its volume which has the following properties:

If we stretch a parallelepiped by multiplying one of its legs by a scalar 4, its
volume gets multiplied by A.

If we add a vector w to i-th legs of a n-dimensional parallelepiped with
{aq,...,a;,a;44, ..., a,}, thenits volume is the sum of the volume from
{aq,...,a;_1,a;,a;41, ..., ay} and the volume of {a4, ..., a;_1, W, j 41, ..., Ay }.

The volume changes sign when two legs are exchanged.

The volume of the parallelepiped with {e;, ..., e,} is one.

¢:V XXV >R
n



Volume

e Example - 2D Case
V(ay, az)
V(2ay, az) = 2V(a,, az)

V(-a1, az) = - V(ay, az) 2
V(Bay, ay;) = - B V(ay, az)

»

aq 2a4

© O O O
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Bilinear Form:
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Continue



Bilinear Form over a complex vector

Definition |
Suppose V and W are vector spaces over the same field C. Then a

function a: V X W — C is called a bilinear form if it satisfies the following
properties:

It is linear in its first argument:

a(vy + vp, w) = a(vy, w) + a(vy, w) and

a (Avq,w) = Aa(vq,w) forall 1 € C,vq, v, EV,andw e W.

It iS conjugate linear in its second argument:

a(v,wy + wy) = a(v,wyq) + a(v,w,) and

o (v, Awp) = la(v,w,) forall 2 € C,v eV, and wy,wy, € W.
The set of bilinear forms on v is denoted by v .



Alternating bilinear form
Definition

A bilinear form a € V() is called alternating if

a(v,v) =0
for all v € V. The set of alternating bilinear forms on V is denoted
by chlzt).
Example

Suppose ¢, t € VV'. Then the bilinear form a on V defined by is alternating.

a(u, ) = p(Wt(w) — p(w)T(u)



Alternating bilinear form

Theorem

A bilinear form a on V is alternating if and only if
a(u,w) =— a(w,u)
Forallu,w € V.

Proof



Alternating bilinear form

Theorem

The sets V2, and V.5, are subspaces of V®. Furthermore,

2 2
v = ng/rzl D chlt)

Proof
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Multilinear Forms

Definition

Suppose Vy,V;,, ..., V, are vector spaces over the same field F. A function
[V XV, XXV, > F

is called a multilinear form if, foreach 1 < j < p and each vy € V;,v,
EV,, ..., v, € Vp, it is the case that the function g : V; - F defined by

glv) = f(vl, Vi1, V, Vi, ...,Vp) forall vev;
is a linear form.

Example

Suppose a, p € V). Define a function g:V* - F by then g € V*

L (v, v,,V3,1,) = a(vy,v3)p(V3, Vy)

16



Multilinear Forms
Definition
Suppose m is a positive integer.

An m-linear form a on V is called alternating if a(v, ..., v,;) = 0 whenever
Vq, ..., Uy, is a list of vectors in V with Vj = Vg for some two distinct values
of jand k in {1, ..., m}.

. VCE;?) = {a € V™) ¢ is an alternating m-linear form on V}.

Theorem

v is a subspace of V™),

Proof



Review: Characterization of Linearly
Dependent sets

Theorem
An indexed set S = {v,, ..., v,} of two or more vectors is linearly

dependent if and only if at least one of the vectorsin S is a linear

combination of the others. In fact, if S is linearly dependent and v;# 0,

then some v; (with j > 1) is a linear combination of the preceding

vectors, vy, ..., Vj_;.
dDoes not say that every vector
dDoes not say that every vector in a linearly dependent set is a linear

combination of the preceding vectors. A vector in a linearly dependent
set may fail to be a linear combination of the other vectors.



Alternating multilinear forms and linear
dependence

Theorem
Suppose m is a positive integer and a is an alternating m-linear form on

V. If vy, ..., v, is alinearly dependent list in V, then

a(vy,..,vy) =0
Proof



No nonzero alternating m-linear forms for m
>dimV

Theorem
Suppose m(number of vectors) > dimV.

Then 0 is the only alternating m-linear form on V.
Proof



Swapping input vectors in an
alternating multilinear form

Theorem

Suppose m is a positive integer, a is an alternating m-linear form on V,
and vy, ..., v, IS a list of vectors in V. Then swapping the vectors in any
switch of a(vy, ..., v,,) changes the value of a by a factor of —1.

Okey, clearing up the last detail. Suppose we know that A(eq, e,, es, e4, es) = 7. What should
Ales, es, eq, €5, ) be?

Ales, es, e, e;, e4) = - A(es, e4, €1, €3, €s5)
= A(es, e;, €1, ey, €5)
= - Aley, €3, 3, e4,€5) = -/

What if we did the switching in a different order? Would we get the same sign? It turns out
that, yes, we would!



Permutation

Definition

Suppose m is a positive integer.

A permutation of (1, ...,m) is a list (jy, ..., jm) that contains each of
the numbers 1, ..., m exactly once.

The set of all permutations of (1, ...,m) is denoted by perm m.



Example

What we need to show is that there is a way to assign a sign to
every permutation of {1,2,3,...,k} such that, switching the order

of any two elements, switches the sign. For example:

(1,2,3) ~ 1 (1,3,2) ~ —1
(2,1,3) ~ =1  (2,3,1) ~ 1
(3,1,2) » 1  (3,2,1) ~ —1

Here is the rule: The sign of (a(1),0(2),...,0(k)) is
(—1)#1(3) + i<j and o(i)>a(5)}

A(ejl A PR ?ejkz) = Sign(g)A(eja(l) 7 €hg(2)r 7 ejr:r(k))'



Permutation
Definition

The sign of a permutation (jy, ..., j,n) IS defined by

sign(y, -, jm) = (=D

Where N is the number of pairs of integers (k,)) with1 <k <l<m
such that k appears after [ in the list (jy, ..., jm)-

Example

The permutation (1, ..., m) [no changes in the natural order] has sign 1.

The only pair of integers (k,1) with k < 1 such that k appears after 1 in the list (2,1,3,4) is (1,2).
Thus the permutation (2,1,3,4) has sign —1.

In the permutation (2,3, ..., m, 1), the only pairs (k,1) with k < 1 that appear with changed order

are (1,2),(1,3), ..., (1, m). Because we have m — 1 such pairs, the sign of this permutation equals
(_1)m—1.



Permutations and alternating
multilinear forms

Theorem

Suppose m is a positive integer and a € ch?)- Then

a(vjl, - vjm) = Sign(ji, o) jm)A(V1, o) Upy)

for every list vy, ..., vy, Of vectorsin V and all (j;, ..., jm)

€ perm m.
Proof



Formula for (dim V)-linear alternating

Theorem

Let n = dim V.Suppose ey, ..., e, IS a basis of V and v4, ..., v, € V. For each k
€{1,..,n}, letbyy, .., by, € F be such that

n
Vr = Z bj,kej
j=1

Then V1= [Z] V2 = [ccl]

a(vy, ..., v,) = a(eq, ..., e,) Z (sign(j1, ....jn))bj1 - bj n
(j1,-jn) Eperm(n)

for every alternating n-linear form a on V.

Proof



Nonzero alternating n-linear form a on

Theorem

(dim V)

The vector space a;,

with inputs from vector space V from has dimension one.

Proof

Theorem
aA(Vq, ..., Vp) = z (Sign(il; ---»]'n))‘le(vl) ---(Pjn(vn)

(j1,-jn) Eperm(n)

The verification that a is an n-linear form on V is straightforward.

a(eq,..,e,) =1



04

Matrix
Determinant



Determinant

Definition Non-square matrices do not have determinants.

Suppose that m is a positive integer and T € L(V).| For a € VCEZ‘), define

a € Va(gl) by

ar(vy, .., vy) = a(Tvy, ..., Tv,,)
for each list v4, ..., v,,, of vectorsin V.

ar = (detT)a

The vector space V2™ ") has dimension one.



Example

Yy ah=v(5]LaD

V(a (1) +b [(1)] ,C [(1) +d [(1)])
"

aV([,| c [(1)] +d [(1):) +bV([(1)] ,C [(1)] e [(1)])

ac V([(l)], :(1)]) +ad V([(l)] , [(1’]) + be V([(l) (1)]) +bd V([(l) 2])

0+adV(y Jp+vevd gho
el 3

V(| =ad-bc



Determinant

Example

Letn =dimV.
 If I is the identity operator on V, then a; = a for all a« € Va({;). Thus det] = 1.

« More generally, if 1 € F, then ay; = A"« for all « € ch?- Thus det(AI) = A™.

« Still more generally, if T € L(V) and A1 € F, then ay; = A"ar = 1*(detT)a for
all € VY. Thus det(AT) = A" detT.



Determinant is an alternating
Theorem

Suppose that n is a positive integer. The map that takes a list vy, ..., v,, of
vectors in F™ to det(v,, ..., v,) IS an alternating n-linear form of F".



Matrix Determinant

Theorem

Suppose that n is a positive integer and A is an n-by-n square matrix. Then

detA = Z (sign(]'l, rjn))Ajl,l "'Ajn.n
(J1,--jn)Eperm(n)
Proof

Example

Determinant of 2*2 matrix
Determinant of 3*3 matrix



Definition of Submatrix 4;;
Definition

For any square matrix 4, let 4;; denote the submatrix formed by
deleting the ith row and jth column of A

1 —2 5 0]
. . 12 0 4 -1
For instance, if A= 3 1 0 .
0 4 -2 0
2 4 -1
Alz |S A12 — 3 0 7
0 -2 0



Recursive Definition of Determinant

Definition

The determinant of an n X n matrix A = [a;;] is the sum of n terms of the
form +a,; det(4,;). with plus and minus signs alternating, where the
entries a,41,a49, ..., a1, are from the first row of A. In symbols,

det(A) — a11 det(All) - a12 det(Alz) + + (_1)1+na1n det(Aln)
= }l=1(_1)1+ja1j det(Alj)



Recursive Definition of Determinant

O 2 x 2 matrix 1Al = XFo (D)™ ay|A] i=1
A= [Ccl Z - |A| = (—1)1+1a11|A11| + (—1)1+2a12|A12|
_ a|EI O b|EI EI|
10 «a ¢ 0O
= ad — bc

Example

|—1
-3

2l = DX -@x(3) =5
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Recursive Definition of Determinant

0 3 x 3 matrix Al = X1 (=D a;;|Ay i=1
a b c
A=|d e f|-> |A
g h i
= (D" a4 + (=D 2ag;|Ag] + (1) ay3|Ay5]
O 0O O O O 0 O 0O 0
=ald e f|-b|d O fl+c|ld e O
O r i g O i g h O

=a(ei — fh) — b(di — fg) + c(dh — eg)
= aei + bfg + cdh —afh — bdi — ceg
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Recursive Definition of Determinant

Example
1 0 1
2 5 4|=-54+404+6—-((25+12+0)=-36
5 3 -1




Cofactor

Definition

Given A = [a;5] , the (i, j)-cofactor of A is the number C;; given by
C;;j = (—1)"* det(4;;)
Then
det(A) = a;1C11 + a12Ci3 + -+ a1pCiy

Which is a cofactor expansion across the first row of A.



Cofactor Expansion

Important

The determinant of an n X n matrix A can be computed by a cofactor
expansion across any row or down any column. The expansion across
the ith row using the cofactor is

det(Ad) = a;1Ciy + a;Ciz + -+ + 4 Ciny
The cofactor expansion down the jth column is

det(4) = ay;C1j+ ay;Cyj+ -+ + an;Cyj



Cofactor Expansion

Example
+ - +
_|- *t -
A=l - 4
5 4
Al =+1X — 0 X
|A| = + 3 _q 0
_ 2 4
|A| = O><5 _1+5><

N

—_




Cramer’s Rule

O Ax = b and A is invertible A=1[4; .. A,] I
= [81 en]
Al = A = Ale1r - en]=[Ae; .. Ae,|=[41 .. A,]
Ij(Ax)
A [el €7 e X o0t en] = [A81 A82 Ax Aen]
= [Al Az ' b °°e ATL]
Aj(b)
1 X1 0
L) =0 x, 0l=x, = |Ij(x)| = X;

0 X3 1

4;(b)
ALi(x) = 4;(b) = Al|;(0)| = [4;(b)| = x; = | a |




Cramer's Rule

LLet A be an invertible n X n matrix. For any b in R", the unique solution X of
Ax = b has entries given by

Ux; = lAi(b)l, i=1,2,..,n
|A|
Example
1 1 2
x1+X2—X3=2 = Xp,= 1 :1 2 :_3:4
2x1 — 3xy + x3 = —1 1 1 —1
2 -3 1




|

— T s
A Formula for 471 '
I
The j-th column of A™1is a vector x that satisfies — Ax = ej —~ z
By Cramer’s rule {(i,j) —entryof A7} =x; = lAililelj)l El
S‘:
|[4i(e;)| = (=1)"*7|4y] ==
L
] ) f
C11 C21 Cnl _
oL G G T
Al | : 5 su3T
-Cln CZn Cnn- o
< =
()
The matrix of cofactors is called the adjugate (or classical adjoint) of |4, ———=

denoted by adj A.



A Formula for 41

Important

Let A be an invertible n X n matrix. Then

D
adj A

At = —
Al
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Properties

d (1) If one row or column is zero, then determinant is zero

Q Q ©
o oo
~~ a0 o

O

O Determinant of zero matrix is...

det(4) = ) (-1 ay; det(4,))
; 1j 1)

det(4) = z sgn(a)ﬁaio(i)
i=1

OESy
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O

Properties

O  (2) If two rows or columns of matrix are same, then determinant is zero.

CE282: Linear Algebra

|A] = +1 X%

|A] = —1 %

1 -2

A=1|1 -2

5 3
_9 3 1
3 1|~ CAXs
9 3 1
3 _1 + (—2) X c

3
3
=l

+ 3 %

—3X

Hamid R. Rabiee & Maryam Ramezani
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O

Properties

O  (3) If two rows or columns of matrix are interchanged, the sign of determinant is

changes!
O @detl)=1

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Properties

3 (5) Row and Column Operations

Q If a multiple of one row/column of A is added to another row/column to

produce a matrix B, then det(4) = det(B).

Proof?
Example
1 -1 2 1 -1 2 1 -1 6
o 2 =-3I=11 1 -1|=1(1 1 3
0O 0 =2 1 -1 0 1 -1 4




O

Properties

O (6) If Ais a triangular matrix, then det(4) is the product of the entries on the main

diagonal of A.
a 0 0 a 0 0
0 b 0]=abc d b 0| =abc
0 0 ¢ e f ¢

Q Determinant of identity matrix is...

O U is unitary, so that |det(U)|=I

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Properties

O (7) If a column or row is multiply to k then determinant is multiply

to k.

d |kAn><n| — knlAnxnl

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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O

Properties

0 (8) If arow/columnis multiple of another row/column then
determinantis ...

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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O

Properties

0 (9) If columns/rows of matrix are linear dependent then its

determinant is zero

2 (10) If columns/rows of matrix are linear dependent if and only if

its determinant is zero.

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani
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Theorem

Theorem

A square matrix A is invertible if and only if det(4) # 0

Example

3 -1 2 -5
o 5 -3 -6
Compute det(4), where A = 6 7 —7 4

-5 -8 0 9



Echelon form

L Row operations

ULet A be a square matrix.

QIf a multiple of one row of 4 is added to another row to produce a matrix B,
then det(B) = det(A)

QIf two rows of A are interchanged to produce B, then det(B) = —det(A)

QIf one row of A is multiplied by k to produce B, then det(B) = k.det(A)



Echelon form

Example

Compute det(4), where 4 =

—2



Determinant of Transpose

Theorem

if A is an n x n matrix, then det(4”) = det(4)



Multiplicative Property
Theorem

if A and B are n X n matrices, then det(4B) = det(4) det(B)
Look at pages 27, 34

Important

In general, det(A + B) # det(A) + det(B)

1 The determinant of the inverse of an invertible matrix is the inverse of the
determinant

AA T =1 |A47Y =l =12 |4||A7 Y =1= |47 = |47

O The determinant of orthogonal matrix is ...



Transformations

Example

Show that the determinant, det: M, (IF) — F is not a linear transformation when n > 2



Transformations

Let T: R? — R? be the linear transformation determined by a 2 X 2

matrix A. If S is a parallelogram in R?, then
{area of T(S)} = |detA|.{area of S}

If T is determined by a 3 X 3 matrix 4, and if S is a parallelepiped in R3,

then
{volume of T(S)} = |detA|. {volume of S}



O

Reference

O  Chapter 3: Linear Algebra and Its Applications, David C. Lay.

O Chapter 9: Part B and C: Linear Algebra Done Right, Sheldon Axler.
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